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FOREWORD

Research during this program was performed by personnel in the
Biomedical Research Division in the Electronics and Computer Systems Labora-
tory of the Engineering Experiment Station at the Georgia Institute of Tech-
nology and by personnel in the Anatomy Department of the Emory University
School of Medicine. This program was sponsored by the U.S. Air Force School
of Aerospace Medicine, Brooks Air Force Base, TX, under Contract No. F33615-
. 81-K-0618. Dr. R. L. Seaman served as principal investigator for the dura-
tion of the program. This final technical report summarizes work done on the
program, designated by Georgia Tech as Project A-2974;, during the 17-month
- period from 1 June 1981 through 30 October 1982.

This research program involved the efforts of several people. Mr. B. J.
Duke and Mr. H. A. Jones of the Emory Anatomy Department prepared the cultured
cardiac cells and the various chemical solutions required for the study. Mr,
R. K. Ager, Jr., also of the Emory Anatomy Department, provided valuable
support by fabricating specialized electronic circuits, participating in
experiments, and analyzing experimental data. Emory student Mark Singer
performed the tedious tasks of counting and analyzing microspikes.
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RADIOFREQUENCY RADIATION EFFECTS ON EXCITABLE TISSUES

I. INTRODUCTION

A, Background

. Over the past several decades, the use of radiofrequency radiation (RFR)
for military, industrial, and consumer applications has increased dramati-
cally. Because RFR can penetrate and heat tissue, the concern that this type
of electromagnetic radiation might adversely affect biological systems has
correspondingly increased. Animal research has conclusively shown various
adverse effects with RFR exposure levels that are high enough to induce
significant heat loads, but conflicting results are seen for lower exposure
levels,

Interest in RFR effects on biological systems has existed for some time.
In many cases, interest has focused on these effects on excitable tissues,
namely, nerve and muscle. The normal function of these tissues involves
changing electric fields and ionic currents which can be altered by applied
static and slowly changing electric fields. It is conceivable that higher
frequency fields, such as those associated with RFR, could also interact with
the naturally occurring fields or the voltage-sensitive membrane components
of these tissues. This section presents a brief review of the literature on
RFR effects on nerve and cardiac muscle and of literature on other topics
relevant to the subject of this report.

Some of the earlier research on cardiovascular effects was reported in
the Soviet literature [28, pp. 117-122; 46, pp. 116-124] and reflected the
researchers' emphasis on central nervous system (CNS) control of the cardio-
vascular system. In these studies, rabbits were exposed to pulsed and
continuous wave (CW) }400- or 3000-MHz radiation at incident power densities
of 3-5 and 7-12 mW/cm”. Small increases and decreases observed in heart rate
depended on the body region exposed. Decreases in heart rate were attributed
to stimulation of the peripheral nervous system because they were absent when
exposed skin was anesthetized. Increases in heart rate were attributed to
effects on the CNS and were dominant when only the head was exposed. It was
also concluded that pulsed radiation had a stronger effect than did CW radia-
tion.

These studies have been repeated using 2400-MHz CW and pulsed radiatio
[10,14,28]. With CW energy applied only to a rabbit's head, 10 mW/cm
incident power density did nof significantly change the heart rate;,only the
highest level used, 100 mW/cm”, effected an increase. With 20 mW/cm” applied
to the entire dorsal surface of the rabbit, no difference in heart rate was
seen. In fact, respiration rate was more sensitive than heart rate in these
studies. These results led to the conclusion that previously reported changes
in heart rate were most likely due to chance variations.

7

e e e -
P A U
R SR TN TS SR,




Isolated heart preparations have been used in attempts to delineate
direct effects on cardiac tissue. For denervated frog hearts in an early
Soviet study, heart rate did not change in response to an incident field of
0.06 mW/cm”; exposure of intact frogs, however, produced effects similar to
those that had been observed in rabbits (46, p. 122]. In a later study, 1425-
MHz radiation pulsed at low repetition rates caused arrhythmias in isolated
frog hearts but only when delivery was delayed until after the P wave of the
electrocardiogram [ 25]. Pulses were delivered coincident with the P wave, 100
ms after the P wave, and 200 ms after the P wave. Arrhythmias were observed in
50% of the irradiated cases with the longer delay, a much higher incidence {
than for other cases. However, these effects were not seen when other
investigators repeated the experiment [17,33].

Some interesting results have been obtained from isolated hearts wher "W
radiation at 960 MHz was applied with a capacitor irradiator. For tv e
hearts, specific absorption rate (SAR) in the range of 2-10 mW/g caus a
decrease in heart rate, but larger SARs and generalized heating cause an
increase [34,53]. Results from drug studies suggested that the decreases :n
at small SARs were due to neurotransmitter release from nerve remnants i
hearts. Similar decreases in heart rate have been found in isolated .
hearts for SARs of 1.3-2.1 mW/g [43,47], and drug studies again indicated an
interaction with nerve remnants. These apparent interactions of low-level
RFR with remnant nerve components suggested that other than purely thermal
mechanisms were involved.

Other isolated preparations of excitable tissue have been used to try to
identify mechanisms for RFR interaction with excitable membranes. Much of
this work was triggered by early Russian investigations using frog sciatic
nerves, which showed not only apparent increases in excitability and conduc-
tion velocity with RFR but differences in effects produced by CW and pulsed
2400-MHz RFR [27]. This research and related work has been reviewed recently
[37;46, pp. 157-1591]. Researchers conducting replicates of these
experiments, using 2450-MHz RFR at SARs of 0.3-1500 mW/g CW and 0.3-220 mW/g
pulsed RFR, attributed all effects to heating of the nerve [15]. With RFR
typically applied for several minutes, other nerve and muscle preparations
revealed no microwave effect beyond that of heating [15,20]. When RFR was
applied longer than 20-30 min, however, an accelerated rundown of frog sciatic
nerves was measured by decreased amplitude of the stimulated compound action
potential ([37]. The accelerated decrease in vitality seemed to be a RFR
interaction with a Na-K pump since ouabain eliminated the microwave effect
[38]. The threshold for this effect was between 5 and 10 mW/g, and the
illustrated data indicate that the effect can occur without changes in }
conduction velocity.

Invertebrate neurons have also been studied to obtain information on RFR
effects at the cellular level. In one preparation, Aplysia pacemaker neurons
were exposed to 1500- and 2450-MHz RFR in a stripline exposure devics, and
their transmembrane potentials were recorded during exposure [49,54,. The
firing rate both decreased and increased, with some changes occurring for SARs
e as low as 2 mW/g. Not all RFR~induced slow changes in firing rate were
- reproduced by warming the preparation; also, rapid changes, seen most often
for pulsed RFR, were not reproduced by heating the preparation. These find-
ings pointed to RFR processes other than thermal ones and to possible
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different mechanisms operative for pulsed RFR. Helix neurons showed a 22%

decrease in membrane resistance after an hour of exposure to 2450-MHz CW RFK
at 15.5 mW/g SAR in a slotted line [2]. A study using the birefringence of
crab nerve indicated larger and more persistent changes caused by pulsed RFR
than by CW RFR or equivalent heating [11],

Several possible mechanisms have been proposed to explain RFR interac-
tion with excitable membranes. Directly induced transmembrane potential has
been estimated to be on the order of a few hundred microvolti'in the CNS of
animals exposed to an incident-field power density of 10 mW/cm® [35]. Recti-
fication of induced microwave curreats to produce effective direct currents
has been proposed [54] and can be predicted on the basis of nonlinear conduc-
tance [4] or capacitance [8] in the membrane. Studies of Chara and Nitella
plant cells have shown rectification for frequencies between 1 and 1C MHz
(5,441, but at higher frequencies only a shift in potential presumed to be
thermally induced [6,44]. These results are in good agreement with the
prediction that rectification cannot be effective at frequencies above an
estimated 32 MHz because of transit time effects, and that effects on
individual membrane particles are probably more significant than rectifica-
tion at higher frequencies [45]. Models of RFR effects on membranes include
one based on the Hodgkin-Huxley equations [13] and one based on quantum
mechanics [51].

With previous Air Force sponsorship, we studied the beat rates of
individual heart cells [12,50]. The research reported here was an outgrowth
of that program and used the same preparation, which is desecribed in Section
I1. Briefly, clusters of cultured chick embryo cardiac cells were exposed to
pulsed (10.9 us at 10,000 pps) and CW RFR at 2450 MHz for 3-miu periods. An
open-ended coaxial exposure device developed on the program was used.
Contraction, or beat, rates (recorded with extracellular electrodes) were
faster during exposure, but only by a few percent for levels up to 85 mW/yg
SAR. Most changes in mean beat rate and in variation were actributed to small
temperature changes of less than 1°¢c during exposure. Because of the large
scatter in beat rate variables, small changes opposite from predictable
thermal effects at small SARs were attributed to chance occurrence. Results
from this previous program will be referred to in this report as '"previous
FTR" [50].

B. Research Objectives

ie uverall objective of tiis program was to investigate the effects of
pulsed and CW RFR on the electrical properties of cardiac-cell membranes. The
specific research objectives as originally proposed are summarized as
follows:

1. Measure voltage noise and small-signal membrane impedance of non-
beating cardiac-cell aggregates from 7-day chick embryos for
different RFR SARs

2. Calculate the variance of membrane current noise for different
SARs, using voltage noise and impedance

9




3. Determine the magnitude of potassium current and the probability
that a single potassium channel 1is open, using voltage-clamp
analysis at different SARs

4, Derive potassium channel density and single channel density, using
the current noise variance, and the probability, using a known
relationship for different SARs

The above analysis was proposed for CW and pulsed (11 us at 10,000 pps)
RFR at 2450 MHz. However, after voltage noise was recorded and membrane
impedance measured for a few aggregates, it became obvious that data relevant
to the proposed research objectives could not be obtained. A voltage noise
that showed a peak at around 1 Hz would have been required. This frequency is
similar to beat frequency and contains information on potassium channels [21-
24]. Also, an oscillatory response of membrane voltage to injected curreat
pulses—-related to channel dynamics [18-22])--was expected. Initial
experiments and analysis showed neither the 1-Hz voltage noise peak nor the
oscillatory response.

Despite the inability to investigate the wmembrane properties as
proposed, data were gathered and analyzed as a function of RFR SAR and modula-
tion. Comparisons between data for different RFR conditions described here
provide information on RFR interaction with the cardiac-cell excitable
membrane. Various aspects of these data and their interpretation are
discussed in appropriate sections of this report.

II. TECHNICAL APPROACH

A. Cardiac-Cell Aggregate Preparation

The multicellular nature of heart tissue, and other tissues as well, can
severely limit an investigation of its electrical and molecular properties.
In 1972, the spheroidal heart-cell aggregate was introduced as a tissue
culture model for studies of the electrical properties of the heart-cell
membrane [36,48]. These aggregates offer the following advantages over more
traditional cardiac preparations:

1. All cells within an aggregate are closely coupled by low-resistance
junctions, but the nonjunctional myocyte membrane exhibits large
resistive, capacitive, and inductive elements {[18]. For spheroids
of 200—um diameter or smaller, signals in the frequency range 0-20
Hz are essentially experienced simultaneously throughout the entire
membrane [21,23,24]. Thus, each aggregate approximates an
isopotential system for both spontaneous and imposed signals.

2. Because of these properties, the aggregate action potential
approximates a true nonpropagated membrane potential, whose
electric field builds and collapses with each beat. For this
situation, the time derivation of transmembrane potential is equal
to the transmembrane current divided by the membrane capacitance.
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3. Aggregates can be prepared in any size within a 30- to 300-m-
diameter range, froq_za few cells to several thousand cells,
containing 10 * to 10 © cm® of membrane.

4. Aggregates are "sticky" and adhere to glass and to plastic culture
dishes. They can also be formed into pairs, chains, or clusters in
which electrical coupling junctions are quickly established at
points of contact. Such multiaggregate systems soon take on a
coordinated, synchronized beat [16,55,56].

5. Aggregates can be prepared from chick hearts at any desired
embryonic age, from stages prior to the time the organ begins to
beat to hatching or shortly thereafter., Such spheroids reflect the
physiological and pharmacological properties of the intact donor
tissue,

6. Aggregates can be maintained in healthy condition--exhibiting
spontaneous, rhythmic beating--for many days in culture.

7. Because they are naturally "space clamped" (virtually isopotential
over a reasonable range of frequencies), aggregates can be
subjected to voltage-clamp analysis of their current-voltage
relationship [42].

For the investigations described in this report, we made measurements on
spheroidal aggregates of chick heart cells maintained in tissue culture. The
cells were derived from embryos of white Leghorn chickens by procedures
standard in Dr. DeHaan's laboratory. After incubation for 7 days at 37.5°C,
embryos were harvested in amniotic fluid and decapitated. Their hearts were
dissected free and trimmed of extraneous tissue; the ventricles were
dissociated with trypsin by techniques previously reported [42,48]. Standard
prgcedures calged for aggregates to be prepared by placing an inoculum of 5 x
10° to 8 x 10° cells in 3 ml of 818A culture medium on a gyratory shaker.
Cells were allowed to aggregate during gyration at 62 rpm and 37.5°C in an
atmosphere containing 5% carbon dioxide, 10% oxygen, and 85 nitrogen. In
some cases, aggregates were prepared by using serum—enriched culture medium
with 82 (ml/100 ml) fetal bovine serum and 4% and 2% concentrations in 818A.
When enriched medium was used, ionic concentrations were also increased; the
resulting medium was designated as E818A. A comparison of these two media
shows the following:

818A E818A
Serum 6% 12%
Sodium (mM) 116 136
Potassium (mM) 1.3 3.3
Calcium (mM) 1.8 3.6

To optimize recording conditions, we used aggregates that had been gyrated
either 48 or 72 hours. In Section III, type of culture medium and gyration
duration are used to specify the aggregate preparation methods.
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At the end of a 48-hour gyration period, each aggregation flask typically

. contained up to 200 sph%{oiQEI clusters which ranged in diameter from 60 to
d 250 um and contained 10°-~10" cells each. At the end of a 72-hour gyration
( period, aggregate size was larger, ranging up to 300 ym. The several hundred

individual cells in each aggregate were beating spontaneously and
rhythmically in a coordinated fashion. For experiments, aggregates and their
. - 3 ml of culture medium were poured into a 35-mm plastic culture dish and the
volume was brought to 4 ml with the same medium (either 818A or E818A). The
= plastic dish was placed under a microscope, on a heating plate modified for RF

exposure described in Section IIB. Temperature, pH, gaseous atmosphere, and
i85 evaporation were controlled and mechanical vibration was minimized.

B. Radiofrequency Radiation Exposure

! The open-ended coaxial exposure device used in this program was
o described in the previous FTR [50] and became the subject of an Air Force
application for a U.S. Letters Patent. Figure 1 is an isometric projection
- of this exposure device. A 1/4~-in. (6.35 mm) semirigid cable opened into the
v circular brass heating plate, with its cut end flush with the plate's upper

; surface. A hubbed circular plate, used to mate the open-ended coax with
existing heating plates, 1insured structural strength and electrical
continuity of the ground plane. The other end of the cable was attached to
RFR sources through appropriate connectors and cables. Figure 2 shows a top
and side view of the configuration of aggregate generally used, along with
microelectrodes and a temperature sensor. Since an RFR-insensitive
temperature probe was not available until the end of this program, the YSI
temperature probe used was placed farther away from the RFR fields than shown
in Figure 2.

N~
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The RFR fields within the bathing medium in a culture dish placed on this
exposure device were characterized by electric-field measurements and
temperature changes [50]. The solid points in Figure 3 show the normalized
SAR distribution at the bottom of the culture dish (the location of all
aggregates studied in this program) as previously determined [50]. The SAR
was normalized to net power (forward minus reflected) to the exposure device
and is shown as a function of radial distance from the center of the coax's
center conductor. Net power was determined for each RFR exposure by using the
power meter reading of forward power for that exposure and readings of forward
and reflected powers obtained at the end of an experiment for each RFR
" frequency and modulation. The distance of the aggregate from the coax center
was measured within the microscope eyepiece micrometer to within 10-um
resolution, Net power and aggregate position were used to calculate SAR by
equations for the straight-line portions of the distribution.
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During this program, we checked that SAR distribution by using a Vitek
model 101 Electrothermia Monitor. This RFR-transparent temperature pr~he has
a diameter of about 1 mm. The rate of temperature rise at the onset ot RFR at
2450 MHz was used to compute an SAR for each location of the probe. Figure 4
shows the temperature record for each of three bottom locations: at the center
(R = 0), at 1/3 of coax dielectric distance from the center conductor (R =
3 1.55 mm), and at 1/2 of coax dielectric distance from the center conductor
(R = 1.88 mm)., Note the absence of a sudden jump in signal with RFR, which
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> Figure 2, Typical cardiac-cell aggregate configuration during RFR exposure.
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\j CC, center conductor; GC, ground conductor; INS, insulator (coax
-

dielectric); Me, microelectrode: !S, temperature sensor.
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Figure 3. SAR as a function of radial distance at bottom of culture dish;
normalized to watts of net input power to exposure device. Solid
circles represent data obtained and reported in a previous FTR,

[50]; open circles, data obtained during the current research
program.
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Figure 4. Temperature changes (upper traces) at the onset of 2450-MHz CW
RFR (lower traces) at the culture dish bottom. A, Center; B, one-
third of coax dielectric distance from center conductor; C, one-
half of coax dielectric distance from center conductor. Calibrations:
o . L
upper traces, 0.2°C per division; lower traces, 5 W forward power
per division; time, 5 8 per horizontal division.
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would have indicated direct RFR pickup by the sensor. The SARs computed from
these data, shown as the open circles in Figure 3, are in reasonably good
agreement with the previously determined distribution. Possible sources of
differences include positioning errors, inaccuracies in determining rate of
temperature rise, and spatial averaging by the different probes. With respect
to the last point, a published theoretical analysis of SAR in tissue in
contact with an open-ended coaxial antenna showed that there is a peak at the
edge of the center conductor [52]. Our measurements showed no peak SAR at the
center-conductor edge (R = 0.9 mm), and its absence can be attributed to the
spatial averaging of temperature by the probes used.

The open-ended coaxial exposure device was connected to appropriate RFR
sources and measuring instruments to provide a system that could expose
cardiac-cell aggregates to a variety of SARs and modulations. Our exposure
and recording setup (Fig. 5) was very similar to that used in the previous
program {50]. A signal source with a maximum output of 1 mW provided CW RFR.
This power was amplified by a Hughes model 1177H S-band TWI Amplifier equipped
with an isolator to protect its output from reflected power. For some
experiments, an HP model 8731B PIN Modulator was placed between the source and
this amplifier to obtain a 1.2-Hz sinewave modulation. The TWT amplifier
output was connected by coaxial cable to the exposure device through a Narda
20-dB bidirectional coupler which sampled powers transmitted to and reflected
from the exposure device. The difference of these powers was the net input
power to the exposure device, which was used to calculate SAR values.
Reflected power was measured at least once for each experiment to assure
consistent operation of the exposure device.

Toward the end of this program, the acquisition of an Epsco model PG53KB
High Power Pulsed Signal Source with a model 5238H/B8 RF Oscillator operating
at 2450 MHz enabled us to expose aggregates to pulsed RFR., This source was
connected to the bidirectional coupler through the same long cable connected
to the TWI isolator for CW exposures. The source worked satisfactorily in
this configuration without benefit of an isolator or matching network. Both
CW and pulsed RFR could be alternately applied to the preparation during an
experiment by connecting the cable to the appropriate source. Pulse
modulation, designated as PW, consisted of 5-us pulses at 100 pps which gave a
0.0005 duty cycle. Pulse duration was checked at the beginning of an
experiment; repetition rate was continuously monitored with a frequency
counter.

C. Experimental Procedures

The transmembrane potentials of individual-cell aggregates on the bottom
of a culture dish were recorded to obtain data. After the medium volume was
brought to 4 ml, the dish was placed on the heated open-ended coaxial exposure
device on the epi-illumination microscope stage. Mineral oil was placed on
the medium to prevent evaporation, a ring providing a gaseous atmosphere to
control pH was put in place, and a YSI thermistor was inserted into the medium
(away from concentrated RFR fields) to monitor bulk temperature. The culture
medium was referenced to electrical ground through an agar bridge inserted at
this time. If necessary, aggregates were moved so that several rested over a
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Figure 5. Block diagram of experimental setup. The RFR source consisted either
of a low-level signal generator and a TWI amplifier for CW exposure
or a high power pulsed-signal source for PW exposure. The power
meter and sham switch provided the RFR signal which was recorded
on FM magnetic tape. The microelectrode signal line represents low-
and high-gain channels for both microelectrodes.




region, about halfway between the coax conductors, where the RFR electric
field was oriented almost horizontally. Tetrodotoxin (TTX) at 10 g/ml was
usually added at this time to block fast sodium currents and thus suppress
spontaneous production of action potentials and contractions. The
- preparation was then left for 2-4 h to allow temperature equilibration of 37°%
(actual range was 37 + 0.2°C) and aggregate adhesion to the dish. For some
experiments, TTX was added after this equilibration period but 10-30 min
before recording began. If an aggregate resumed activity in a long
experiment, an additional dose of TTX was added to the prepara.ion,

PLENFLEY

—~
\..

AP ES
.

Microelectrodes were drawn from l.l-mm glass capillary tubing with
. internal glass fibers. Each microelectrode was filled with 2.5 M KCl by
pressure injection from a small metal tube inserted into the electrode's open
X end. These procedures resulted in microelectrodes with DC resistance between
3 10 and 80 MQ. The tips of two microelectrodes with acceptable DC resistance
of greater than 20 MQ were ©positioned over an aggregate with
micromanipulators. Gentle tapping and fine positioning of a micromanipulator
were used to obtain an intracellular penetration to give a transmembrane
potential. Several trial experiments were required to develop techniques
that gave stable penetrations lasting more than a few minutes.

Microelectrode signals were amplified and recorded on FM magnetic tape
for later analysis. Each signal was recorded at 10X DC-coupled and at 1000X
AC-coupled, using a high-pass filter with a cutoff at 0.1 Hz. The low-gain
signals, a signal proportional to RFR forward power, and a signal proportional
to injected current were displayed on a four-channel strip chart. This
display was useful for observing trends and making decisions on experimental
manipulations. The chart record and notes taken during an experiment formed a
permanent record. Signal flow for one microelectrode is shown in Figure 4.

O KA A

After preliminary experiments to refine experimental techniques, RFR
- exposures were 3 min long (180- to 195-s range) with a similar, sometimes
" longer, period between exposures. Timing was accomplished initially with an
experiment clock described previously [50], and later with a digital
. stopwatch. Figure 6 shows the designation of noise-analysis epochs to RFR
5 exposures. Exposure and no-exposure periods consisted of two parts indicated
. in Figure 6 by the experiment-clock signal. The half-period interval just
before an exposure was designated PRE; the interval just after an exposure,
POST. The POST interval was followed by a POSTPOST interval which was usually
the PRE interval for the next exposure. The exposure period itself was
di-ited into the intervals BEG (for beginning) and END. In Section IIT,
N experimental results for membrane voltage noise are described in terms of
these intervals. (Analysis epochs for microspike frequency of occurrence
were similar except the exposure was divided into three l-min intervals called
BEG, MID, and END.) In some experiments, 2-min exposures were used to
maximize the number of exposures during a stable dual penetration; for these,
intervals were a nominal 1 min long (instead of the nominal 1.5 min for the 3-

min exposures).
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I11. EXPERIMENTAL RESULTS

Cardiac-cell data collected during this program can be placed into three
major types: membrane impedance, membrane voltage noise, and microspikes.
Since each type was studied during different RFR exposure conditions, results
are presented separately.

A. Membrane Impedance

The membrane impedance for the cardiac cells of an aggregate was measured
by injecting a nominal 1- to 3-nA current through one microelectrode and
recording the membrane voltage response with the other microelectrode. Based
on previous studies [18,22], an oscillatory or near-oscillatory response to
these step currents was expected. However, responses showed either no
overshoot or a critically damped overshoot of steady-state value.

Figures 7 through 11 show the averaged responses to hyperpolarizing
current pulses under different CW RFR levels in one aggregate. Each figure
has four panels, and each panel represents a time-averaging analysis, on an HP
5420 Digital Signal Analyzer, of recorded data. The analyzer was triggered at
time zero by the recorded current-pulse signal either at onset or offset of
each 4.5-s pulse. The two top panels are the on- and off-responses over 4 s,
The recorded low-gain DC signal, used to provide an accurate representation of
slow variations in potential, gave a relatively high noise level. The voltage
scale includes microelectrode offset potential and is 2-mV full scale in all
figures. The two bottom panels show the recorded high-gain signal for the
first 160 ms of on- and off-responses. The voltage scale for these panels is
also 2-mV full scale.

For the low-gain signal recordings (top panels Figs. 7-11), analyzer
cursors were set to measure steady-state voltage difference in each panel.
This difference divided by the 0.95 nA of injected current is the membrane DC-
resistance R_, an average value of which is included in each figure. Although
R ranged between 0.758 and 0.881 MQ, no specific effect could be assigned to
the RFR that ranged between 2.03 and 141.6 mW/g. The observed changes in Rm
and the variations in membrane potential in this experiment were attributed to
variability in the quality of the microelectrode penetrations. The slope
(dv/dt) of the high-gain response onsets and offsets (bottom panels, Figs. 7-
11) is equal to I/Cm, where 1 is the injected current and Cm is the membrane
capacitance, for the isopotential aggregates. Since I was the same in all
cases in these figures, the slope provides a measure of C_. No differences
were seen in slope (thus Cm) for the range of SARs applied:

Figure 12 shows voltage responses of an aggregate in another experiment.
The average of 10 response onsets before and the average of 10 response onsets
during 139-mW/g CW RFR are shown for the first 3 s of the responses. The
decrease in overshoot with RFR was seen in both onset and offset of the
voltage response., This example illustrates the only case in which a change in
the overshoot of steady-state potential was seen. Because there was no
overshoot in subsequently tested aggregates, the effect on overshoot was not
pursued.
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Figure 12. Membrane impedance measurements with overshoot. A (before RFR)

and B (during 139-mW/g CW RFR) each show an average of 10 responses
to 0.95-nA injected current pulses.
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B. Membrane Voltage Noise

Fluctuations of less than roughly 1 mV in membrane potential are called
membrane voltage noise and electrical activity of membrane molecular
components [22]. 1In this program, the simultaneous microelectrode signals
were used to study membrane voltage noise of cardiac-cell aggregates. Figure
13 shows two examples of recorded membrane voltage noise. Note that in each
example the noise 1is virtually the same for both microelectrode signals
because of the isopotential nature of aggregates. The high-gain recordings of
these signals were played back and fed to the HP 5420A analyzer. Using its
FFT (fast Fourier transform) capabilities, the analyzer performed a cross-
spectrum operation on the signals in the frequency domain, With appropriate
scaling of the inputs, the cross-spectrum operation gave a membrane-voltage-
noise spectral density (spectrum) with units of volts”/Hz versus frequency in
Hz. After preliminary work with the analyzer defined reliable operation, a
3.125-Hz bandwidth was used for the 3-min exposures. This bandwidth gave a
single run lasting 82 s and a total of 95 s for five averaged overlapping runs
to match closely a BEG or END epoch of a 3-min exposure. For 2-min exposures,
a 6.25-Hz bandwidth was used to obtain a 62-s total analysis duration to match
the shorter BEG and END epochs. The duration of PRE and POST epochs for an
exposure was matched to its BEG and END durations.

Figures 14 through 21 show examples of the spectra derived from different
aggregates for different sham and RFR conditions. Each figure shows the
results for PRE, BEG, END, and POST analysis epochs associated with an RFR
exposure. From these spectra, it is seen that low frequency energy (from 0.1
to 0.5 Hz) dominated the spectra and was somewhat variable. Systematic
changes in the spectra did not always occur with an RFR exposure level or
modulation. In view of these variations in spectra, statistical tests were
made on the spectra ppwer for different RFR-induced changes. For these tests,
the power (in volts®) from 0.1 to 1.0 Hz under each spectrum was found by
using an analyzer calculating function. Powers for similar exposures were
grouped and tested statistically for differences between each RFR condition
and non-RFR conditions,

Initial experiments done in E818A medium yielded data on membrane
voltage data. For analysis, data were taken from 16 sham exposures and 21
exposures to 2450-MHz CW RFR: 7 exposures to 1.,4-2,8 mW/g (low dose), 7 to
13.9-23.5 mW/g (medium dose), and 7 to 102.4-143.4 mW/g (high dose) in five
experiments. Scatter plots of these data suggested a difference between noise
power in nonexposure analysis epochs and noise power in the analysis epochs
during medium and high doses, or SARs of 4.1-143.4 mW/g. The results of a
statistical analysis applied to these data are shown in Figure 22. Data were
pooled by combining noise powers from (1) all 106 available nonexposure
analysis epochs: PRE, BEG, END, and POST of sham exposures and PRE and POST of
RFR exposures; (2) 85 of these nonexposure epochs: 21 RFR-exposure POSTs
excluded; and (3) 28 RFR-exposure epochs: BEG and END of medium- and high-dose
exposures. Figure 22 shows combinations 1 and 3 of these data an. the
regression lines derived for each condition. A z-test showed that the slope
of 0.80 for the exposure regression lines was significantly different from the
slope of 0.38 for the illustrated nonexposure regression line at the 0.05
level, also that slopes for combinations 2 and 3 were significantly different.




Figure l3. Membrane voltage noise from cardiac-cell aggregates. Data from
two different aggregates, each with two microelectrodes recording
noise. Calibrations are for both examples.
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Figure 14. Membrane-voltage-noise spectral densities for a 3-min SHAM exposure,
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The two regression lines for combinations 1 and 3 intersected very near a
membrane potential of -81 mV. This meant that, on the average in these five
experiments, CW RFR caused a decrease in noise power when membrane potential
" was more negative than -8l mV and an increase in noise power when membrane
potential was more positive than ~81 mV. Further experiments were then done,
using 818A medium which gave resting membrane potentials in the -55 to -45 mV
range, to explore increases in power and to increase the overall data base.

|

Two major statistical analyses were used on the combined data from E818A
. and 818A experiments. Based upon power differences (designated DIFF), the
average power of SHAM-exposure (0 SAR) analysis epochs for an aggregate was
subtracted from all other powers for that aggregate, This procedure
eliminated much of the interaggregate variability, In another analysis, PRE
power for each RFR exposure was subtracted from the subsequent BEG, END, and
POST epochs for that exposure, emphasizing changes (designated CHANGE) 1in
power. In each type of analysis, the powers were plotted against membrane
potential and a least-squares regression analysis [31] was carried out to fit
a straight line to the data for each RFR condition. Slopes of these
regression lines were tested with two-tailed t-tests {22]. Slopes were
considered significantly different if the t-test revealed a significance
level of 0.05 or less. In some cases, two-tailed t-tests of means were
performed with the same criteria.

Figures 23 through 28 show the DIFF analysis for 3-min RFR exposures.
Slopes for BEG, END, and POST epochs were not significantly different from the
respective PRE slope for 1-5 and 5-15 mW/g CW (Figs. 23 and 24). The BEG (and
only BEG) slope significantly differed from the PRE slope for 15-30 mW/g CW
(t=2.623, df=36; Fig. 25). For the highest CW levels (100-200 mW/g), the
BEG, END, and POST slopes again did not significantly differ from the PRE
slope (Fig. 26). In this last case of high SAR, the BEG t=1.423 (with df=22)
i is significant only at the 0.20 level. For 5-15 and 15-30 mW/g PW (Figs. 27
- and 28), the BEG, END, and POST slopes did not differ significantly from the
Ei respective PRE slope at the 0.05 level. In Figure 28, one data point for

43.8-mW/g PW is shown but was not used in the statistical analysis. For 3-min
SHAM exposures (Fig. 29), the BEG (and only BEG) slope was significantly
different from the PRE slope; t=2.258, df=80.
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Figures 30 through 36 show the CHANGE analysis for 3-min exposures at l-
5, 5-15, 15-30, and 100-200 nmW/g CW; 5-15 and 15-30 mW/g PW; and SHAM
respectively. In Figure 33, data poin*s shown for 23i-mW/g CW were not used
in statistical analyses. In Figure 35, a data point shown for 43.8-mW/g PW
was not used in statistical ana.ysis. For CHANGE, BEG, and END, slopes were
tested against the slope for that SAR's POST epoch, taken as a chronologically
close non-RFR epoch. In addition, BEG, END, and POST slopes were tested for
each SAR against the same analysis epoch for SHAM exposures (Fig. 36). No
significant differences were found in slopes in tests using an SAR's own POST
epoch. 1In tests against SHAM analysis epochs, the 1-5 mW/g CW BEG slope was
significantly different from the SHAM BEG slope; t=-2.122, df=59. The END and
POST slopes of 5-15 mW/g PW were different from SHAM epochs at the 0.10 level
" with t=1.936 and 1.886 and df=45 and 42; the critical t to be exceeded was
:T' about 2.016. The POST slope of 15-30 mW/g PW also was different from the SHAM
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To provide larger data bases for testing, data from CW and PW exposures
were pooled for 5-15 and 15-30 mW/g, for which both CW and PW data were
available. The same tests of DIFF and CHANGE data described above were
applied to these combined data groupings. For the combined CHANGE, no
significant differences were found. For DIFF, the slope of BEG 15-30 mW/g was
significantly different from the PRE slope at the 0.0l level; t=2.9236, df=42.
This was the only significant difference found for the combined DIFF. The
combined DIFF analyses for 5-15 and 15-30 mW/g are shown in Figures 37 and 38.

Figures 39 through 42 show the DIFF analysis for 2-min exposures at 5-15
mW/g CW, 5-15 mW/g PW, 15-30 mW/g PW, and SHAM respectively. Slopes in the
first two groups were not significantly different from PRE slopes. Because of
the small range of membrane potentials, regression analyses were not done on
the latter two groups. Instead, conventional two-tailed t-tests on the means
of DIFF powers were performed; and for completeness, they were done for all 2-
min groups. The 15- to 30-mW/g PW BEG mean was significantly different from
its respective PRE mean at the 0.0l level with t=-3.373 and df=8; this was the
only significantly different 2-min DIFF,

Figures 43 through 46 show the CHANGE analysis for 2-min exposures at 5-
15 mW/g CW, 5-15 mW/g PW, 15-30 mW/g PW, and SHAM respectively. For the
reasons cited above for DIFF analysis, straight-line fits were done only for
the 5- to 15-mW/g PW CHANGE; no significant difference in slopes was found.
The 2-min CHANGE means were tested using two-tailed t-tests as for DIFF; no
significant difference in means was found.

As done for 3-min data to obtain a larger data base, 2-min data from CW
and PW exposures were pooled for 5-15 mW/g. The combined DIFF analysis is
shown in Figure 47. Although DIFF END slope had a t value of ~1.763, this was
significant at only the 0.10 level with df=22, Thus, no significant
differences were seen in slopes and means of DIFF and CHANGE analyses.

The temperature dependence <«f membrane voltage noise was investigated in
aggregates in E818A medium, Figure 48 shows these results obtained for a
range of membrane potentials. In five of six cases, the membrane voltage
noise decreased as temperature rose from 36°C to 38° C; from 37°c to 38° C, the
noise decreased in all six cases. This latter range was the tenperature range
in aggregate experlments since the maximum temperature elevation with the
highest SAR was 0.9 °C as measured with the Vitek model 101 Electrothermia
Monitor.

The significant differences found for membrane voltage noise are
summarized as follows. In 3-min exposures, significant differences were seen
for the 15- to 30-mW/g CW BEG DIFF slope (0.05 level), SHAM BEG DIFF slope
(0.05 level), 15- to 30-mW/g combined CW/PW BEG DIFF slope (0.0l level), and
1- to 5-mW/g CW BEG CHANGE slope (0.05 level). For 2-min exposures, a
significant difference was seen for the 15- to 30-mW/g PW BEG DIFF mean (0.0l
level). The most significant differences are associated with SAR lev..s of
15-30 mW/g. For 3-min CW exposures, the change was an increase in slope--
indicating an increase in DIFF power at membrane potentials more positive than
-60 mV. This was consistent with the results for initial experiments in E818A
medium for 3-min CW RFR exposures with SARs of 14 to 143.4 mW/g. For 2-min PW
exposures, however, the power decreased for membrane potentials more positive
than -60 mV. This may indicate a difference between CW and PW effects on the
cardiac-cell excitable membrane.
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( C. Microspikes

R In detailed examinations of high-gain membrane potential records,
Tﬂ;' transient depolarizing events occurred in random fashion without RFR. These
WOME events, termed '"microspikes," had been previously described for this

= preparation [23,24]. Microspike amplitudes ranged from 0.2 to 8 mV, and their
durations were from 0.2 s to more than 10 s. Figures 49 through 51 show 4
: examples of microspikes recorded from different aggregates. These examples
SR were chosen to illustrate the diversity of microspike shapes; although some
were taken from RFR exposures, no shape change with RFR was determined.
X Microspikes from an aggregate were recorded with both microelectrodes
simul taneously and isopotentially, and multiple occurrences were occasionally
observed (Figs. 50 and 51). Their characteristic shape included a '"fast"
onset of a few hundred milliseconds and a much slower return to baseline which
often included an undershoot of the original testing membrane potential. Some
longer microspikes seemed to be the temporal summation of shorter events.
Since more or larger microspikes (or both) would cause an increase in measured

a s
St e
LAPR I s

s A X =A
s
o
ey,

- o

- membrane voltage noise, these events were investigated as a possible response
g to RFR exposure and a cause of the noise increases already seen.
.};: In the first experiments to test for possible RFR effects on microspikes,
:Qj large microspikes occurred within the first minute of exposure. Figure 52
l:4 shows this type of response in three different aggregates exposed to 10- to
- 30-mW/g CW RFR. Figure 53 shows records from another aggregate exposed to
( different RFR levels. Here the response was strongest for 20.9-mW/g PW; 23.4-
T mW/g CW and 7.9-mW/g PW were ineffective. These results were consistent with
- the membrane voltage noise results that indicated a noise increase during BEG
T of exposures in the 15- to 30-mW/g r=uze.
i To investigate microspike responses to RFR more fully, microspikes
. greater than 0.2 mV were counted during l-min epochs (BEG, MID, and END) of 3~
:}: - min RFR exposures. Frequencies of occurrence were determined for 1 min before
? RFR exposure (PRE), for each of the three l-min epochs during exposure, and
A for 1 min after exposure (POST). The data were pooled according to SAR and
fij modulation, and then a mean frequency of occurrence and its variance for each
b condition were calculated. A two-tailed t-test was used for differences in
means relative to the PRE mean to test these statistics. For membrane voltage
a:l noise data, differences were considered to be significant at the 0.05 level.
i:j Figures 54 through 56 show the mean frequencies with standard error bars
o and the number of epochs for each data point. The only significant difference
S in means was between PRE and POST in pseudo SHAM. This type of SHAM was done -
L. to augment SHAM data and resulted from analysis of data in long periods
gt without RFR exposures. No significant differences were seen in microspike
5 frequency of occurrence with RFR exposure.
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Figure 49. Microspike examples. Top: 4-mV full scale, no RFR. Bottom: 8-mV
full scale, during 21.8-mW/g CW RFR exposure. Both: l-s time division.
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Figure 50. Microspike examples. Top: double microspike, 8-mV full scale with
both microelectrode signals (offset), no RFR. Bottom: small microspikes,
2-mV full scale, no RFR. Both: 2-s time division.
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Figure 51. Microspike examples. Both: 8-mV full scale with both microelectrode
signals (offset). Top: single microspike during BEG of 7.7-mW/g
CW RFR exposure, l-s time division, Bottom: multiple microspikes
during END of same exposure, 2-s time division.
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It was surprising to find no significant difference in average
microspike frequency of occurrence after the initial experiments had shown
obvious microspike responses to RFR (as in Figs. 52 and 53). A millivolt
microspike represented a transmembrane inward current of 1-2 nA, depending on
aggregate size and experimental conditions, which was capable of modulating
the normal beating of aggregates. In the analysis of aggregate beat rate
reported in the previous FTR, brief beat-rate increases, called flurries,
occurred (50, p. 1l1]. These flurries occurred with the frequency of
microspikes and had the durations of the large microspikes seen more recently.
Thus, it was highly likely that microspike events were responsible for the
beat rate flurries. This is important because differences in mean beat rate
with RFR were often discounted in the earlier work as not significant because
of the large variations caused by flurries. Based on the recent microspike
data with RFR, it is probably more correct to consider the occurrence of
flurries as a possible RFR effect. The large coefficients of wvariation
previously seen in beat rate with RFR SARs from 8.4 to 43.8 mW/g [50] may have
been caused by the same mechanism causing microspikes. This observation may
also be relevant to previous studies using frog, turtle, and rat hearts in
which beat rates were observed {17,25,26,33,34,43,47,53].

Microspikes may be related to fluctuations of intracellular free
calcium, as indicated by other experiments, which have been linked to membrane
potential fluctuations 1in this [9,19] and other cardiac preparations
{19,29,30,39]. 1In this regard, the microspikes could be used to study RFR
effects on calcium exchange in cardiac cells which involves the glycoproteins
and glycolipids of the cell coat [32]. A better understanding of microspike
mechanisms would contribute directly to the interpretation of results
obtained in such a study.

IV. CONCLUSIONS AND RECOMMENDATIONS

During this program, cardiac-cell aggregates exposed to CW and pulsed
2450-MHz RFR by an open-ended coaxial exposure device provided data on RFR
effects on the excitable membranes of living cardiac tissue, Because the
well-studied aggregate has representative excitable properties, this
information is applicable not only to cardiac cells but also to other
excitable cells exposed to similar RFR levels. In this section, conclusions
based on the results are given and :ecommendations are made for further
research.

Data were obtained for 2- and 3-min RFR exposures, so results pertain
directly to exposures of these acute durations. No effect on membrane
regsigtance and capacitance was observed for exposures to CW RFR from 2 to 142
mW/g. Significant differences in the relation of membrane voltage noise to
membrane potential occurred for the following RFR conditions:

1. beginning of 1-5 mW/g CW 3-min exposures

2. beginning of 15-30 mW/g CW 3-min exposures

3. beginning of 15-30 mW/g combined CW and PW 3-min exposures

4 beginning of 15-30 ww/g PW 3-min exposures.
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All significant differences were for the beginning analysis epoch (first 1 to
1.5 min) of exposure and most occurred for the 15- to 30~mW/g SAR range. As
explained in Section III.B., the 2-min PW and 3-min CW effects were opposite
in direction, indicating a possible difference in interaction of the pulsed
RFR (5 us at 100 pps) and CW RFR. Although the initial experiments indicated
an RFR effect on the occurrence of microspike potentials, SARs from 1 to 200
mW/g showed no significant differences when results were averaged across

experiments.

The following recommendations for further research are based on the
experiences with RFR exposure of cardiac-cell aggregates in this program and
on the conclusions reached from the results of several experiments:

o Investigate RFR effects on membrane noise for SARs of 30 mW/g and
smaller. This will define the smallest SAR effective in causing
changes in noise. These studies should be done using voltage clamp
techniques to remove membrane potential as an uncontrolled
variable.

o Conduct experiments with RFR exposures lasting for many minutes (an
hour or more). This will provide information on effects of chronic
long-term exposure on cardiac cell membranes. Long-term effects
have already been reported for frog sciatic nerve (37], snail
neurons [ 2], and plant cells [7].

o Use microspikes and other membrane properties to study the RFR
effects on calcium transport systems in cardiac cells.
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VI. LIST OF SYMBOLS AND ABBREVIATIONS

BEG 95-s analysis epoch at beginning of 3-min RFR exposure
60-s analysis epoch at beginning of 2-min RFR exposure

CHANGE analysis of membrane voltage noise in which PRE power was
subtracted from powers of subsequent analysis epochs of an
exposure

CcwW continuous wave

df degrees of freedom in statistical tests

DIFF analysis of membrane voltage noise in which averaged noise power

from SHAM exposures for an aggregate was subtracted from RFR
analysis epochs

END 95-s analysis epoch at end of 3-min RFR exposure
60-s analysis epoch at end of 2-min RFR exposure

IB1 interbeat interval in milliseconds
PW pulsed (wave) modulation
POST 95-s analysis epoch after 3-min RFR exposure

60-s analysis epoch after 2-min RFR exposure

POSTPOST second 95-s analysis epoch after 3-min RFR exposure
second 60-s analysis epoch after 2-min RFR exposure

PRE 95-s analysis epoch prior to 3-min RFR exposure
60-s analysis epoch prior to 2-min RFR exposure
t;;: Pseudo
b’}‘ * SHAM control exposure during which RFR generator was not energized
; r Pearson's correlation coefficient
i RFR radiofrequency radiation 1
SAR specific absorption rate in mW/g
[
SHAM control exposure during which RFR generator was energized but
. output level was zero
o
- t test statistic used for sample size less than 25
o z test statistic used for sample size greater than 25
' um micrometer = 10_6 meter
o
A
.
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